If it's not what You are looking for type in the equation solver your own equation and let us solve it.
20w^2+21w+4=0
a = 20; b = 21; c = +4;
Δ = b2-4ac
Δ = 212-4·20·4
Δ = 121
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$w_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$w_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{121}=11$$w_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(21)-11}{2*20}=\frac{-32}{40} =-4/5 $$w_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(21)+11}{2*20}=\frac{-10}{40} =-1/4 $
| 6x-45=2x-1 | | 9.4=-m+5.6 | | 6+6r=8.28 | | x-2=-9x+18 | | 2x(x-6)+6=4x-4 | | 32/100x^2+6x=0 | | -m-4=9 | | 240=6x+4(7x-8) | | 3q/5=22=28 | | 22.95=x+12.25= | | 22.95=x+12.25 | | 3-10m=-24 | | 2(x2)+8Y=121.5 | | 38=2w+4+w | | 3u+7(u-7)=31 | | 18=3{3x-6} | | 2/3*a+1/2=7/2 | | 11/15x=1100 | | j-47/3=9 | | 3(.33y+3.833)+2y=6 | | 16x-2+14x+12=180 | | 3u÷7u-49=31 | | X+4+1+5x=29 | | 2−.5n=3n+16 | | 5x-5=3x-25 | | 5(3n-2)=2n+56 | | x^2-5x=3x-12 | | -1/3(4+x)=-5/6 | | |10n|=20 | | 16x2+8x+4=0 | | 4(x−5)=32−20 | | -12.25-x=-22.95 |